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Multiplicities of angular momenta in a system of 
N-dimensional oscillators and the reduction SU(N) =, O(3) 

V V Mikhailov 
Kazan Physical and Technical Institute of the Academy of Sciences of USSR, Kazan 
420029, USSR 

Received 22 August 1977 

Abstract. The method of enumeration of all O(3) irreducible representations contained in 
the representation of a system of an arbitrary number of N-dimensional harmonic oscil- 
lators with definite quantum number is presented. The close connection of this problem 
with the reduction SU(N)XO(3)  is discussed. A new simple graphical method for the 
determination of the angular momentum content of SU(3) irreducible representations is 
introduced. 

1. Introduction 

One of the important problems in group theory and its physical applications is a 
problem concerning the decomposition of irreducible representation (IR) of SU(N) 
into IR of O(3). It arises particularly from the angular momentum (AM) classification 
of states of n-particle systems when each particle has 2s + 1 = N energy levels. 

A most careful study has been made of the reduction SU(3)3 O(3). For this case 
various explicit orthogonal and non-orthogonal bases were constructed, relations 
between different bases and comparisons with the case of the canonical reduction 
SU(3) 3 SU(2) 3 U(l)  were given, etc. An appreciable difficulty in the solution of the 
reduction SU(3) 3 O(3) was the missing label problem. All these questions were 
discussed by Elliot (1958a, b), Bargmann and Moshinsky (1960, 1961), Judd et a1 
(1974), Moshinsky et a1 (1975). Hughes (1973a, b), Green and Bracken (1974), 
Green et a1 (1976), Sharp (1975). 

On the other hand SU(N) is a symmetry group of the N-dimensional harmonic 
oscillator (HO) (Baker 1956). This fact has been the starting point for a variety of 
papers concerning the group theoretical properties of HO (Wybourne 1974 and 
references therein) and the boson operator realisation of the SU(N) state vectors. But 
the latter deals especially with the state vectors of the canonical reduction SU(N)3  
SU(N- l ) ~  . . . U(l)  (Baird and Biedenharn 1963, Louck 1965, Ciftan and Bieden- 
harn 1969). 

In the present paper by means of a boson-operator method we will consider the 
reduction SU(N) =I O(3). On the whole we will be interested in the outward side of 
this reduction: the determination of the multiplicities of the O(3) IR in the SU(N) IR. 
It is to be noted that earlier Jahn (1950) (see also Flowers 1952), suggested the 
recurrence method, now widely used, based on decomposition of the outer multi- 
plications of the symmetric group IR. The essence of the method is given for example 
in Hamermesh (1962) and Kaplan (1969). 

443 



444 V VMikhailov 

Besides that another method for the particular case of this problem was described 
by Buttner (1967). He has constructed generating functions, recurrence relations and 
tables for AM multiplicities in the system of bosons each having spin s, which is 
equivalent to finding the multiplicities of O(3) IR in the SU(N) symmetric IR (the IR 
which correspond to a Young tableau of one row). 

Later, the present author (Mikhailov 1974, to be referred to as I) has obtained 
analogous formulae by another method, based upon the boson representation of AM 

in accordance with the methods of Schwinger (1965) and Bargmann (1962). 
Below we give the method of enumeration of all O(3) IR contained in the 

representations of O(3) X O(3) for the system of an arbitrary number of N-d’ imen- 
sional HO (90 1,2). Similar to I we introduce auxiliary numbers for the purpose of 
finding the AM multiplicities in the system and give the recurrence relations and 
generating function for these numbers (§ 3). The four tables of the multiplicities and 
their general properties are given (0 3). The close connection of this problem with the 
reduction SU(N) 3 O(3) is discussed (00 43) .  A new simple graphical method for the 
determination of the AM content of SU(3) IR is introduced (appendix). 

2. Multiplicities of 0 ( 3 ) X 0 ( 3 )  IR contained in the representation of a system of 
N-dimensional HO 

Let us consider the N .  N‘ pairs of the creation and annihilation boson operators a: 
and d :  which satisfy the usual commutation relations 

/.L = -s, -s  + 1 , .  . . s; 

N = 2s + 1, N’ = 2s’+ 1; 

v = -s f ,  -sf  + 1, . . . SI ,  

s ,s ’=O,z ,  1 , 2 , .  . * .  1 5 .  

We can say that the operators a: describe N’ HO each having dimension N. But 
below, for the sake of brevity, we refer to this system as N .  N ’  HO. 

The following quadratic combination: 

n = C  n u  =E n, = a$: 
Y & u., 

is the particle number operator and 

are AM operators of two kinds: with lower and upper indexes. The J operators satisfy 
AM commutation relations. For example for lower-index operators we have 

[Jo, J*] = *J*, [J+, J- ]  = 2Jo. 
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Any lower-index operator and any upper-index operator have vanishing commutator 
and both commute with the particle number operator. Therefore from various 
quadratic combinations we have picked two sets of operators which constitute two 
independent O(3) algebras. After that we can label the states of N .  N'  HO by the five 
quantum numbers n, j ,  m, 7, f; where jQ+ l), m are the eigenvalues of Jo(Jo - 1)+ 
J+J-, Jo and T ( T  + l ) ,  C are the eigenvalues of the analogous operators with upper 
indices. It is evident that 

j = n s , n s - I , . .   or$, 
T = ns', nsl- I , .  . . , o or t ,  
m = - j , - j + l ,  . . . ,  j ,  [ = - 7 , - 7 + 1 , . .  . , 7 .  

(6 )  

Of course this number of indices is not sufficient for the full description of all states 
even in the simple case of 3.2 HO. Because of this shortage of labels AM multiplicities 
greater than one appear, and these multiplicities will be considered. 

Homogeneous polynomials of degree n in a: represent some state of our HO 
system. Each state or a manifold of the states may be expressed in terms of basis 
states of IR Di of the first or the second O(3) group. Our aim is the analysis of possible 
j multiplicities without special operator construction of the states. 

For this purpose we will build graphs, generalising the trees from I to three- 
dimensional trees. As an example, figure 1 shows a tree for the 3.2 HO. Below we 
describe the properties of this graph and its method of construction. 

n.2 

Figure 1. The tree for 3.2 HO. For the sake of clarity some of the ribs are omitted. From 
each of the vertices corresponding to n = 1 and n = 2 run out 3.2 = 6 ribs as from the 
vertex corresponding n = 0. 

Open circles in figure 1 are the vertices. The tree rests upon the ground state 
vertex and stretches upwards to infinity. Each rib (line connecting two adjacent 
vertices) corresponds to a definite creation operator a: for upwards motion and an 
annihilation operator d: for downwards motion. From each vertex N .  N' ribs run 
upwards. 

Each vertex corresponds to some state of N .  N'  HO 

a:,a$. . . ~ ~ 1 0 ) .  (7) 
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All the possible vertices, lying in a horizontal plane, describe the variety of HO states 
with definite n. 

Further the route is a sequence of the ribs when the end of each rib coincides with 
the beginning of the next rib. We consider the routes escaping from the ground state 
vertex upwards. The state (7) corresponds to a definite route. Two routes are 
equivalent if it is possible to get one route from another by means of boson-operator 
permutations. In each vertex (open circle) we put the number of inequivalent routes 

nmC. In I the corresponding two-dimensional numbers were PE (1 = n). The upper 
indices in Cy-r define the type of the tree and the lower ones define the site of the 
vertex in a given tree. 

Let us consider an O(3) X O(3) representation a:'. Its representation space is 
based upon all n-quantum states of N . N '  HO. a',"' can be expanded into the 
O(3)X O(3) representations DjT: 

css' 

where DjT = Dj 0 D,; Dj, D, are O(3) IR. The dimension M:' of the Qr' represen- 
tation space is 

These dimensions satisfy the requirements 

In order to determine basis states of representations DjT we seek the state I$) which 
satisfies simultaneously two conditions: J+I$) = 0 and J'II,~) = 0; therefore 14) = 
In, j ,  j ,  7,~). After that we can construct all other states 

of this basis. 

in I that for the case S I  = 0 there is the relation 
The multiplicities 4:: and numbers C$, are non-negative integers. It was shown 

which agrees with (10) and (11). In order to find a relation generalising (12) to the 
case of arbitrary s' we consider a concrete example. Suppose N = 3, N' = 2, then we 
can get the verification from table 2 (Bargmann and Moshinsky 1960). The tree from 
figure 1 corresponds to this case. We put n = 3. Because of symmetry Cmr = C-,.< = 
Cm,-r it is sufficient to write down a quarter of the plane n = 3: 

0 1 2  3 - m  
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To extract the basis states, we begin from the state l j ~ )  = 13,z) = (a :/2)310) which is 
unique. From this state we construct all (2j + 1)(27 + 1) = 7.4 = 28 basis states 
13, m, t ,  5). Subtraction of this basis from the basis of representation Q:,1/2 

corresponds to the subtraction of one from each number in (13). After this subtraction 
(13) takes the form 

Now we construct the state lj, T) = 11, t )  and the basis 11, m, $, 5). Subtracting this basis 
from the space described in (14) we must subtract one from each number which lies 
not to the right of and not above m = 1, [ = 3. The remainder has the form 

- .  
0 1 2 m  

Similarly we extract from (15) two bases 12, m, 4, l )  and 11, m, t ,  f ) .  Now the full 
decomposition of Q is 

Q3 = D 3 , 3 / 2 + D 1 , 3 / 2 + D z , i / 2 +  D 1 , 1 / 2 .  (16) 
The general rule for finding qniT is as follows. From the line T in the table of 

numbers Cmnr (here we put m = j ,  f = T) it is necessary to subtract the line T + 1, 
obtaining in this way the sequence of 2sn + 1 numbers. Then we must subtract the 
number j + 1 from the number j in the sequence. The following formula summarises 
these rules: 

So with the help of (17) the problem (8), concerning decomposition of Q,, is reduced 
to the determination of route numbers Cnmr in the N .  N’ tree. It should be noted that 
the four outward planes of the three-dimensional tree coincide with the flat trees from 
I for which the generating function and the recurrence relations were constructed and 
for which a number of typical properties have been described. 

3. Route numbers C$ 

As in I in order to describe the route numbers we will use an analogy with a simple 
combinatorial problem about the change of money (Polya 1956). 

Let us bring a combinatorial equivalent xs+”ys-LLus’+”os’-” in correspondence with 
the operator a; and form the product of the infinite series 

n [1 + X S + L L y s - L L U S ’ + ” o S ’ - Y + ( X s + L L y S - L L U s ’ + ” o S ’ - ” ) 2 +  . . * ]  
LL, U 
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Picking out of each square bracket in (18) only one term and multiplying these we find 

In (18) and (19) j~ and v in the sums and in the products vary in accordance with (2). 
Expression (19) enters into the product (18) exactly CnM times. This then implies that 

x s + w  s -w s'+v s*-v n (1- y U 0 )-l 
w. U 

It is this generating function which in general completely defines the route numbers. 
However, it is easier to determine the numbers with the help of recurrence relations 
which are consequences of (20). 

To get the simple relations we put s' = 4. For the sake of brevity, the index s t  in C 
is omitted. Let us transform (20) in the following way: 

(21) = (1 - x 2 " ) - l ( l  - x 2 s v ) - l  1 c>mix"l+" "S1-mUI"+gUt"-C Y 
n.md 

, Choosing from this chain of equalities where s t  = s -2, X I  = x y  
the first and the last lines, we obtain the relation between C" and C-'. Comparing 
the coefficients of xaybuCvd on both sides, we find a recurrence formula: 

1 1 / ( 2 s - l )  , y1  = y 2 s / ( 2 s - 1 )  

Similarly we obtain a recurrence formula for s' = 1: 

Undoubtedly this is not the only recurrence relation for s t  = $, 1 and it is possible 
that there are more simple ones. Using (22) and (23) it is not difficult, however, to 
construct the tables of route numbers for the cases of N .  2 HO and N .  3 HO. In tables 
1-4 we give the multiplicities q which were obtained with the help of (22), (23) and 
(17). 
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Table 1. Multiplicities qnh for 3.2 HO. (In table 2 (from Bargmann and Moshinsky 1960) 
they are given up to n = 12). 

i 
n r  

0 1 2 3 4 5 6  

1 f  1 

2 1  1 1 
0 1 

3 :  1 1 
f 1 1  

4 2  1 1 1 
1 1 1 1  
0 1  1 

5 4  1 1 1 
i 1 1 1 1  
t 1 1 1  

6 3  1 1 1 1 
2 1 1 1 1 1  
1 1  2 1 1  
0 1 1 

Table 2. Multiplicities (Inir for 4.2 HO. 
~~ ~ 

i 
n r  

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

1 1  1 

2 1  1 1 
0 1  1 

2 1 1 1 1  

1 2 1 2 1 1  
0 1  2 1 

3 ;  1 1  1 
1 - 

4 2  1 1 1 1  1 

5 4  1 1 1 1 1  1 
3 1 2 2 2 2 1 1  
- 
2 1 2 2 2 1 1  

2 1 1 3 2 3 2 2 1 1  
1 3 2 4 2 3 1 1  
0 2  2 1 2  1 

6 3  1 2 1 1 1 1  1 

7 5  1 1 1 2 1 1 1 1  1 
4 1 2 3 3 3 3 2 2 1 1  
2 2 3 4 4 4 3 3 1 1  
t 1 3 3 3 4 2 1 1  

3 2 2 4 3 4 3 3 2 2 1 1  
2 2 2 5 4 6 4 5 3 3 1 1  
1 4 3 6 4 5 3 3 1 1  
0 2  3 1 3 1 2  1 

8 4  1 1 1 2 1 2 1 1 1 1  1 
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Table 3. Multiplicities qmh for 3.3 HO. 

i 
n r  

0 1 2 3 4 5 6 7 8  

1 1  1 

2 2 1  1 
1 1 
0 1  1 

3 3  1 1 
2 1 1  
1 2 1 1  
0 1  

4 4 1  1 1 
3 1 1 1  
2 2 1 3 1 1  
1 2 1 1  
0 2  2 1 

5 5  1 1 1 
4 1 1 1 1  
3 3 2 3 1 1  
2 1 2 3 2 1  
1 4 2 3 1 1  
0 1  1 

6 6 1  1 1 1 
5 1 1 1 1 1  
4 2 1 4 2 3 1 1  
3 1 3 3 4 2 1  
2 3 2 7 3 4 1 1  
1 4 2 3 1 1  
0 3  3 1 2  1 

7 7  1 1 1 1 
6 1 1 1 1 1 1  
5 3 2 4 2 3 1 1  
4 1 3 4 4 4 2 1  
3 6 5 8 4 4 1 1  
2 2 4 6 5 4 2 1  
1 6 4 6 3 3 1 1  
0 2  2 1 

8 8 1  1 1 1 1 
7 1 1 1 1 1 1 1  
6 2 1 4 2 4 2 3 1 1  
5 1 3 4 5 4 4 2 1  
4 4 3 9 6 9 4 4 1 1  
3 1 6 7 9 6 5 2 1  
2 5 4 11 7 9 4 4 1 1  
1 6 4 6 3 3 1 1  
0 4  5 1 4 1 2  1 
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Table 4. Multiplicities q,,* for 4.3 HO. 

i 
n 7  

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

1 1  1 

2 2  

1 

1 
0 

3 3  
2 
1 1 1 
0 1 

4 4  1 
3 
2 2 2 
1 3 
0 2 1 

5 5  1 1 
4 
3 2 5  
2 3 5  
1 
0 1 1 2 1 1  

6 6  1 
5 1 
4 1 5 5  
3 4 5 9  
2 
1 4 
0 5 2 7  4 

7 7  1 1  1 
6 
5 4 5 8  
4 
3 
2 8 15 18 19 16 13 
1 7 13 17 16 16 11 8 5 1 
0 2 4 4 5 3 3 1 1  

7 
6 
5 
4 
3 
2 10 17 31 32 37 28 26 16 12 
1 
0 6 3 1 2  8 1 4  7 1 0  4 5 2 2 

8 8  1 1 1 2 1 2 1 1 1 1  1 
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In I the following property of the numbers Ci,,, (s = 0) was noted: for n > no upper 
no+ 1 numbers Ci,,, Cln,,-l, . . . , Ci,,-,, are identical. There are two more general 
properties for the N .  N' HO which are true both for the route numbers C and for the 
multiplicities q. 

Property 1 .  Let us take the rectangle of multiplicities for a given no and for the definite 
N .  N ' .  We draw a straight line cutting off no+ 1 numbers on the top table edge (from 
right to left) and as many numbers on the right table edge (from top to bottom) (see 
table 4). The numbers, which occur above this line, repeat in total in the upper right 
corners of ail rectangles of multiplicities with n > no. This property appreciably 
simplifies the problem of multiplicity construction. 

Property 2. It concerns a relation between tables with neighbouring numbers N or N'  
and with the same number n. We fix the latter number. Under such conditions the 
upper N' lines in the table N .  (N'+ 1 )  coincide with the upper lines in the table N .  N '  
and the right N columns in the table ( N  + 1 ) .  N '  coincide with the right column in the 
table N .  N'.  

We may check the correctness of the q-tables with the help of dimension relations 
similar to (10). We seek the representation dimensions MY' of an N .  N' HO system 
with fixed numbers n and T.  It is possible to find explicit formulae in some simple 
cases: 

i + 3  MAL2.' =( i+2+27)(  ), n - 7 = 2 i + l ,  

i + 2  MAL2,' = $[(i + l ) ( i  + 2)+ 1 + (2i + 3 ) ~ ]  ( ), n - T = 2i, (27) 

n - ~ = 2 i .  (29) 

4. Multiplicities and dimensions in SU(N) 3 O(3) 

We now give a comparison of the multiplicities q (90 2,3) with the multiplicities which 
appear in the reduction SU(N) 2 O(3). Therefore we will briefly describe the reduc- 
tion. Some of the structures and relations, outlined schematically in this section, are 
given at greater length in, e.g., Hamermesh (1962). 
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The IR F f A ]  of SU(N) reduces to the sum of IR Di of O(3) in the following way: 

here [A] = [Al, A2, . . . , AN], Z Ai = n, the multiplicities f s A ] j  take integer values includ- 
ing zero. The dimensions LfA] of IR F f A ]  are defined by the well known Weyl formula 

The reduction SU(N) 2 O(3) is closely related with the determination of the general 
AM of an n-atom system when each of these atoms has 2s + 1 = N equidistant levels. 
Such systems may have AM = ns, ns - 1, . . . , 0 (or 4) each occurring Pii times. The 
numbers P i j  were described earlier (Mikhailov 1977). They are the sums of all 
multiplicities f f A ] j  for given i, s, n. The summation weights are the dimensions N[A] of 
symmetric group IR with Young tableaux [ A ]  

Psni = f s A ] f l [ A ] *  (32) 
[A 1 

Dimensions and multiplicities encountered in this reduction also satisfy the relations: 

Table 5 illustrates (30)-(34) for two cases n = 5 ,  s = 1 and n = 5 ,  s = 4. 
tableaux, is given in the appendix. 

A new simple graphical method for the determination of fiA]j, related to the Young 

i 
s n [AI 1 G* 1 

0 1 2 3 4 5 6 7 8  

1 5 [51 1 1 1 1 
[4,11 4 1 1 1 1  
[3,21= [3, 11 5 1 1 1  
[3, 1*]=[2] 6 1 1 
[22, 11=[1] 5 1 

21 
24 
15 
6 
3 

~~ 

P:i 6 15 15 10 4 1 243 = 3' 

8 5 [SI 1 1 1 1 1 1  1 56 
[4,11 4 1 2 2 2 2 1 1  84 
[3,21 5 1 2 2 2 1 1  60 
[3, 121 6 1 1 2 1 1  36 
[22, 11=[2,11 5 1 1 1 1 20 
[2,1"=[1] 4 1 4 

ZI 20 34 36 30 20 10 4 1 1024=4' 
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5. Relation between N. N' HO and SU(N) 3 O(3) 

From I we know that one N-dimensional HO supplies us with the AM multiplicities in 
symmetric IR (Young tableau [Al ,  0, 0, . . .I) of SU(N). From tables 1-4 and Barg- 
mann and Moshinsky (1960) it is easy to determine that two N-dimensional HO give 
the AM multiplicities in IR [A 1, 0 ,  0, . . . 01 and [A 1, 1,0,0,  . . . , 01. There is the simple 
correspondence 

1 

1 (35) 
(i) [ A I  = h O , O ,  . . .I, r=zn  

{ (ii) [ A ]  = [n - 1, 1,0,0, . . .], 7 = zn - 1. 
s 1 j Z  qAj7 = f s A ] j  

One qight expect that the N' N-dimensional HO will give information for the 
determination of AM multiplicities in IR with more general Young tableaux 
[A 1, A 2, . . . , A N , ,  0, 0, . . .I. Indeed, detailed analysis shows that the numbers q are the 
quadratic contraction of the numbers f: 

Here the summation extends over all possible partitions [A], existing for given s, S I  and 
n. 

Having written the two matrices of numbers f in table 5 we can multiply them in 
accordance with (36). Preliminarily, it is necessary to discard from numbers f3" the 
line [A]  = [2, 13] because a four-line tableau is not possible for s = 1 (N = 3). The 
result of the multiplication is a matrix of numbers q from table 4 (when n = 5). 
Similarly, every matrix of numbers q from tables 1-4 can be expressed in the form 

The dimensions LfAl obey a relation which is a consequence of (36). To obtain this 
we write down the relation, supplementing (30), for another group SU(2s' + 1) and the 
same partition [A] :  

(36). 

Now we multiply the right and left sides of (30) and (37) separately and carry out the 
sum over all partitions [A]: 

It is known that the dimension of the last term, in accordance with (8) and (9), is equal 
to M","'. Therefore 

6. Conclusions 

The method of construction of AM multiplicities in N .  N' HO ($3 2,3) and the relation 
of numbers q with numbers f (36) may, in principle, be used as an alternative to the 
Jahn method. If we know q"' and f" we will easily get fs with the help of (36). 
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Moreover, if we do not know either f s  or fs' we may, beginning from (35), get 
subsequently all the lines [ A ]  of numbers f'. 

Construction of numbers f by this method has several stages of calculation: finding 
the numbers C, then the numbers q and finally the numbers f. This is its shortcoming. 
However, the advantage of this method is that we have here a comparatively simple 
generating function and recurrence relations which completely solve the problem. The 
trees graphically illustrate the essence of the method. 

The result of this paper allows generalisation to the case when the dimension of the 
HO is the product of an arbitrary number of integers, i.e. in terms of our notation to 
the case N 1 N 2 . .  . Nk HO. 

The approach to the related problems of HO and SU(N) 2 O(3) is restricted here 
by the question of dimensions and multiplicities. But it may probably be extended to 
the other group properties such as the construction of operators, basis states, matrix 
elements, etc. 

Appendix 

The AM content of SU(3) IR is already well known (Elliot 1958a,b, Bargmann and 
Moshinsky 1960, 1961). However, until recently there was no simple graphical 
method for calculating AM multiplicities. Recently, Hughes (1973b) suggested a 
method connected with diagrams. Here we present a graphical method related to the 
Young tableaux. 

We will draw the Young tableaux as rows of dots. Because of [ A l , h 2 , A 3 ] =  
[Al  - A 3 ,  A2-A3,0] we consider only two-row tableaux. We introduce three elemental 
dot combinations to which we assign the definite AM: 

solitary spot 0 j = 1  

horizontal couple 0-0 j = O  

vertical couple z j =  1. 

We must fill the definite Young tableau in accordance with the following rule. The 
solitary spot may be: (i) only in the first row excess; and (ii) in the rightmost dot of the 
second row. The horizontal and vertical couples may be in all possible positions. 
After the occupation of the tableau we calculate the total AM of the tableau by simple 
summation of all elemental AM. The number of different ways of the occupatiw with 
definite AM is the multiplicity to be determined. 

0-0 0-0 
0-0 

0 0-0 0 
0 0  

Therefore IR FtAl, [ A ]  = [5,3,1],  decompose into IR Di by the following way: 

Let us consider an example [ A ]  = [ 5 ,  3, 11 = [4 ,2]  

! I m o  j = 4  

j = 3  1 
j = O  

== i = 2  

Fi5,3,1j =Do+ 2DZ+D3 +D,.  
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It is not only the visual demonstration that is the advantage of this graphical 
method. Practically, it removes degeneracy of the AM states in SU(3) IR: the states 
may be labelled with the Young tableaux which are filled by the elemental combina- 
tions in a definite way. 
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